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Abstract Arctic Oscillation (AO) variability impacts climate anomalies over the middle to high latitudes
of the Northern Hemisphere. Recently, state-of-the-art climate prediction models have proved capable
of skillfully predicting the AO during the winter, revealing a previously unrealized source of climate
predictability. Hindcasts from the North American Multimodel Ensemble (NMME) show that the seasonal,
ensemble mean 200 hPa AO index is skillfully predicted up to 7 months in advance and that this skill,
especially at longer leads, is coincident with previously unknown and strong relations (r > 0.9) with the
El Niño–Southern Oscillation (ENSO). The NMME is a seasonal prediction system that comprises eight
models and up to 100 members with forecasts out to 12 months. Observed ENSO-AO correlations are within
the spread of the NMME member correlations, but the majority of member correlations are stronger than
observed, consistent with too high predictability in the model, or overconfidence.

1. Introduction

Over the middle- and high-latitude regions of North America, Europe, and Asia, the Arctic Oscillation (AO) or
North Atlantic Oscillation (NAO) explains a significant fraction of temperature and precipitation variance, par-
ticularly during the Northern Hemisphere winter (Hurrell et al., 2013; Thompson & Wallace, 2001). In many
regions of the Northern Hemisphere extratropics, the AO explains more climate variability than does the
El Niño–Southern Oscillation (ENSO), whose seasonal predictability makes it a primary contributor to skill in
seasonal climate outlooks. The AO, however, has long been considered an internal mode of climate variabil-
ity, resulting from feedbacks between the zonal mean flow and synoptic-scale eddies (Lorenz & Hartmann,
2003). Thus, skill in forecasting the AO was largely believed to be limited to weather prediction time scales
(Feldstein, 2000).

The recent documentation of skillful predictions of the wintertime AO/NAO in many state-of-the-art climate
models is a revelation (Kang et al., 2014; Riddle et al., 2013; Scaife et al., 2014; Stockdale et al., 2015) and
promises to improve climate outlooks in regions with AO/NAO teleconnections. A wide range of phenomena
have been proposed as potential sources of predictability for the winter AO, with time scales of seasons to
decades (e.g., Smith et al., 2016). Among other factors, AO skill could arise from tropical climate anomalies,
including ENSO (Dai & Tan, 2017; Dunstone et al., 2016; Tang et al., 2007; Yu & Lin, 2016), as well as Arctic sea ice
(Wang et al., 2017), Eurasian snow cover (Cohen et al., 2010), and stratospheric-tropospheric coupling (Butler
et al., 2016; Sigmond et al., 2013). Whatever mechanisms are responsible for AO skill, it would seem that only
now have state-of-the-art forecasting systems been able to represent them with sufficient accuracy, either
through improved physics, better data assimilation, or improved observing networks.

An alternative perspective is that periods with higher skill can also occur naturally and randomly, without
precursors, and do not necessarily reflect improvements in the models or observations. Shi et al. (2015) find
periods of higher skill, rivaling recent findings, and also periods of lower NAO skill on subsets of a 42 year
set of forecasts. Estimates of the ability to predict climate phenomena depend on sample size and choice
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of historical period. For instance, Barnston et al. (2012) reveal that ENSO skill has significant decadal and
subdecadal fluctuations in a set of operational climate forecasts. The relation between indices can also vary
significantly as shown by O’Reilly et al. (2017) who note changing correlations among tropical Pacific SST
anomalies, the Pacific/North American (PNA), and NAO indices.

Here we find that the seasonal mean AO index is skillfully predicted by the multimodel ensemble mean of
the eight climate models that compose the North American Multimodel Ensemble (NMME) for lead times
out to at least 5 months for winter and early spring target seasons. We define the AO using the 200 hPa
geopotential height level because it is the only model level available; thus, we are examining the lower
stratosphere poleward of 60∘N. Ensemble mean forecasts of the AO and ENSO (Niño-3.4) indices are very
strongly related, with correlation coefficients in excess of 0.9 during the winter. That this relation does not
emerge nearly as strongly in the observational data suggests that the AO-ENSO covariance could be phys-
ically meaningful and a relevant factor in AO prediction skill, but small relative to the internal atmospheric
variability of the AO for most lead times and seasons. Alternatively, the AO in the NMME models may be overly
responsive to variability in ENSO, especially for those target seasons when the observed AO-ENSO relation
is weakest.

2. Data and Methods

The NMME includes eight coupled models: GFDL-CM2p1-aer04, NASA-GMAO-062012, COLA-RSMAS-CCSM4,
GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-FLOR-B01, CMC1-CanCM3, CMC2-CanCM4, and National Centers for
Environmental Prediction (NCEP) CFSv2 (Kirtman et al., 2014). Hindcast data are provided for the period
1982–2010, and real-time forecasts started in mid-2011. The results here are for the period 1982–2016.
Monthly data are provided on a 1∘ × 1∘ grid and forecasts extend up to 12 months into the future. Seasonally
averaged forecasts extend nine forecast leads beyond the starting month. For example, lead-0 seasonal fore-
casts initialized in early December predict the December-January-February (DJF) average. The only exception
is NCEP CFSv2, which, for the hindcast period, is run every fifth day (four members each day), with the six times
per month initializations occurring up to the seventh day of the start month.

Monthly data from NMME are bias corrected by removing the forecast (lead time dependent) climatology of
each model separately using the entire 1982–2016 period. Observed anomalies are also calculated relative to
the 1982–2016 monthly mean averages.

The ENSO index is based on Niño-3.4 sea surface temperature anomalies in the east-central equatorial Pacific
Ocean (5∘S–5∘N, 170∘W–120∘W; Barnston et al., 1997). The observational monthly and seasonal averages
in the Niño-3.4 index are formed from daily 0.25∘ × 0.25∘ Optimum Interpolation sea surface temperature
data (Reynolds et al., 2007), which is chosen because its higher resolution more closely matches the initial
conditions of several NMME models.

The AO index that we use is computed from the leading Empirical Orthogonal Function (EOF) of 200 hPa
geopotential height data for 20∘–90∘N and over all calendar months (Thompson & Wallace, 1998). This level
was selected due to NMME data availability in the International Research Institute for Climate and Society
(IRI) archive (https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). The 200 hPa observational data are
based on monthly NCEP/NCAR Reanalysis data (Kalnay et al., 1996). For correlations between the AO and
Niño-3.4 indices, one of the indices is inverted for easier visualization, so a positive coefficient means that the
AO and ENSO are inversely related (e.g., positive AO and cool phase of ENSO). Statistical significance of the
correlation coefficients is assessed at the 5% significance level using a one-sided Student’s t test.

Due to the size of the NMME data set (100 Members × 35 Years × 12 Monthly Lead Times × ∼65,000 Grid
points) and because the AO index is a large-scale mode, we employ a spatial dimension reduction technique
and project the model and observational data onto the 100 leading Laplacian eigenvectors of the 20∘–90∘N
domain (DelSole & Tippett, 2015; Saito, 2008). Laplacian eigenvectors are orthogonal and similar to spherical
harmonics but are defined for general domains (access here: http://iridl.ldeo.columbia.edu/home/.tippett/.
Laplacian/.NMME). The observed AO index is computed from the leading EOF of the NCEP/NCAR Reanalysis
200 hPa geopotential height. The model AO index is computed by projecting the model data onto the
observed EOF. Therefore, the AO indices are formed in each of the NMME models with respect to the same
observation-based pattern.
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Figure 1. Anomaly correlation of the (left column) AO index or the (right column) Niño-3.4 index between seasonal
mean observations and the NMME ensemble mean forecast (top row), the theoretical expected correlation based the
square root of the Signal Variance (ensemble mean) divided by the Total Variance (middle row), and the absolute value
of the top row minus the middle row (bottom row). In the bottom row, red shading indicates where the absolute value
of the actual correlation (top row) is greater than the expected correlation (middle row) and vice versa for blue shading.
Dots in the top row indicate correlations at the 5% significance level. The lead time is by month, for sliding seasonal
averages.

3. Results

For the first-lead seasonal forecasts (lead-0), the correlation between the ensemble mean NMME fore-
casts and the observed 200 hPa Arctic Oscillation (AO) index is statistically significant in all seasons except
September–November (SON) and October–December (OND; Figure 1, left column, top). The largest lead-0
correlations occur during the Northern Hemisphere winter and spring, with a correlation of 0.57 during the
winter season of December–February (DJF) and maximizing at 0.66 during March–May (MAM). Interestingly,
the only NMME models that do not show significant skill at lead-0 are the two GFDL FLOR models, which are
initialized using only ocean observations (supporting information Figure S1 shows correlations for all indi-
vidual models and monthly targets). Thus, there appears to be an advantage to initializing the atmosphere,
which can provide skillful information on the state of the AO for the upcoming month or season.
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Figure 2. Anomaly correlation between of the NMME ensemble mean
Niño-3.4 and AO index values. Dots indicate the 5% significance level. The
bottom row (Obs) indicates the contemporaneous correlation between the
Niño-3.4 index and the AO index. The AO index has been inverted. The lead
time is by month, for sliding seasonal averages.

Beyond lead-0, NMME skill is mostly insignificant except for forecast tar-
gets during the three overlapping seasons of DJF to FMA (Figure 1, left
column, top). The lead-0 and lead-1 correlations appear to be smaller than
the ∼0.6 correlations for DJF documented for individual modeling sys-
tems (Kang et al., 2014; Riddle et al., 2013; Scaife et al., 2014; Stockdale
et al., 2015). As the lead time increases to 5–7 months, the correlations
drop to ∼0.4, indicating that roughly 16% of the observed winter to spring
AO variability is captured by the NMME mean for forecasts made as early
as July.

The skill of the forecast depends on the specific time interval (in this
case, 1982–2016) and may not reflect the intrinsic predictability of the
climate system. Scaife et al. (2014) and Eade et al. (2014) note that
the signal-to-noise ratio, a measure of predictability, is much lower in
the UKMet model during December–February (∼0.2, corresponding to a
correlation of ∼0.4) than one would expect given correlations between
their model and the observations. They argue that their model may be
underconfident and argue that the real world is more predictable than
what the model signal-to-noise would suggest. Based on theoretical con-
siderations, Kumar (2009) and Tippett et al. (2010) provide a derivation for
an “expected correlation” for a given signal-to-noise ratio. To compare the
actual correlation between the forecast and the observations (Figure 1, left
column, top) to the expected AO correlation (Figure 1, left column, middle),

the absolute value is taken and the difference is shown in Figure 1 (left column, bottom). For most seasons
and leads, the expected correlations are larger than the actual correlations (more negative values), indicat-
ing higher predictability in the model, or overconfidence. This overconfidence is especially prominent for
forecasts of spring and summer targets, which tend to have lower variance relative to the winter in both the
models and the observations (Figure S2). Because the observed and model total variances are similar during
these seasons, it follows that the model signal may be too large (or equivalently that the noise is too small),
leading to higher expected correlations or predictability.

In contrast with the spring and summer, the differences for wintertime targets are smaller and imply that the
predictability implied by the NMME ensemble is reasonably capturing that of the real AO (Figure 1, column
left, bottom). For DJF only, there is a weak indication of forecast under confidence out to lead-5. At longer
leads (lead-7 and beyond), there is a suggestion of overconfidence or higher predictability in the model, as
indicated by the larger expected correlations. Supporting information Figure S2 corroborates that the total
variance of the model is, in fact, lower than the observations, implying slight underdispersion, which is a result
that often emerges for other variables and domains (e.g., Shi et al., 2015).

In contrast to the AO, the correlations associated with ENSO are statistically significant for all seasons and leads
(Figure 1, right column, top). Skills are in excess of 0.9 up to the lead-4 forecasts (for targets outside of the
summer/early fall) and minimize at ∼0.6 for the longest lead time (lead-9) for the SON target, reflecting the
weakness in skill for forecasts traversing the well documented “spring barrier” (Barnston et al., 2017; Tippett
et al., 2017). In addition to Niño-3.4 predictions having higher skill than the AO predictions, the expected
Niño-3.4 correlations (Figure 1, right column, middle) strongly resemble the actual correlations between the
observations and ensemble mean (Figure 1, right column, top). The differences between the expected and
actual correlations are generally very small for short lead times (leads 0 and 1) and for all lead times for tar-
gets in the winter and early spring (Figure 1, right column, bottom). Thus, for most seasons, the observed
correlations match the predictability estimated by the NMME. Interestingly, the largest gap is evident for
targets during the spring and summer, when the actual correlations are higher than the expected ones.
This occurs during seasons and leads with a relative minimum in skill, and yet from this perspective, the
implication is that the model’s estimate of predictability may still be slightly too low. Lower expected cor-
relations are consistent with the models tending to have higher variance than observations (supporting
information Figure S2).

Despite the relatively high level of skill in predicting ENSO and low level of skill in the AO, Figure 2 shows that
the correlation between the ensemble means of the Niño-3.4 index and the AO index is statistically significant
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Figure 3. All member average of 100 correlations between seasonal averages of the (top) NMME ensemble mean
Niño-3.4 and AO index values. Bottom row shows the observed correlations and dots indicate the 5% significance level.
For forecast Lead-0 (bottom left) and forecast Lead-7 (bottom right), each individual Niño-3.4 and AO correlation is
shown for the 100 members (blue dots). The red line shows the observed correlations, the blue line shows the all
member average (same as top panel), and the black line is the ensemble mean correlations indicated in Figure 2. The AO
index has been inverted. The lead time is by month, for sliding seasonal averages. Numbers above the abscissa indicate
the fraction of ensemble members whose Niño-3.4 and AO correlation is less than the observed correlation.

for nearly all lead times and seasons in the NMME (supporting information Figure S3 shows correlations for
all individual models and monthly targets). The correlations between the two indices exceed 0.9 for targets
during DJF through MAM for lead-3 to lead-9, with a maximum correlation of 0.96 for lead-5 in JFM and FMA.
A minimum in correlations between the two indices occurs during the summer and early fall (JJA through
ASO), which are the seasons when both the AO and Niño-3.4 skills are relatively lower (Figure 1). The high
correlations found in the NMME stand in striking contrast with the substantially weaker contemporane-
ous correlations found in the observed data, which range from 0.25 (JFM and FMA) to −0.15 during SON.
The observed correlations are reproduced when we use other SST and reanalysis data sets (supporting
information Figure S4).

However, the observations contain both signal and noise components, whereas the ensemble mean rela-
tionship uncovered here isolates only the correlations among the signals in the predicted ENSO and AO
indices. Thus, the lack of a relation in the observations may simply reflect, at least in part, the noise of internal
atmospheric variability, whereby a truly physical connection between the two phenomena is metaphorically
drowned out.

Though the correlations are highest between the ensemble mean indices, significant relations in the NMME
also extend to the individual members, primarily during the winter and spring seasons. Figure 3 shows the
correlation between Niño-3.4 and the AO index in all 100 members of the NMME. The average correlation
of the individual members is shown in the top panel, with the bottom panels showing the all member aver-
age (blue line) and associated spread of the member correlations (blue dots) for lead-0 (left panel) and lead-7
(right panel). Lead-7 is displayed because of the generally high level of AO-Niño-3.4 association. The obser-
vational data represent just one possible outcome, so the forecast ensemble should ideally encompass that
one outcome. In fact, this is the case, where the observed relationship between Niño-3.4 and the AO indices
(red line) appears to mostly lie within the spread of the model ensemble (blue dots), although consistently
below the average.
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Figure 4. NMME z200 anomalies regressed onto standardized indices computed for NMME lead-0 (left column) and
lead-7 (right column) based on monthly data from January 1982 to December 2016. (top row) The z200 regressed onto
the AO index but first computed for all 100 members individually and then averaged together. (middle row) The z200
ensemble average regressed onto the AO ensemble average. (bottom row) The z200 ensemble average regressed onto
the Niño-3.4 ensemble average. The bottom row is multiplied by a factor of 3 to aid comparison with the middle row
and the Niño-3.4 index has been inverted.

The relatively lackluster correlations seen in the observed indices may be reflecting internal atmospheric vari-
ability that is only present to a lesser degree in the models. The idea that sampling variability is also playing
a role in the observed AO-ENSO correlations is also hinted at by the spread of correlations in moving 35 year
sliding windows in data sets going back to 1950 (supporting information Figure S4, bottom). Especially dur-
ing the boreal winter season, the correlations over the most recent 1982–2016 period appear to be on the
lower end relative to other historical periods.

Nevertheless, Figure 3 shows that the average of the individual member correlations (blue line) and the cor-
relations of the ensemble mean (black line; same data as in Figure 2) are stronger than in the observations.
Thus, even when taking the noise in the NMME into account, the ENSO-AO relationship in the model is—on
average—stronger than the observed relationship, which is on the low end of the model spread for initial-
izations during the 1982–2016 period. That the observations lie on the lower end of the spread for all target
seasons seems unlikely to be due to chance. For half of the seasons, the observed correlations are lower than
10% of the model correlations. The results in Figure 1 may indicate that the model’s estimate of AO predictabil-
ity is too large, or alternatively, the model estimate may be correct or even too small, but the model skill is
deficient because other predictable signals are missing or distorted. Thus, one possible interpretation is that
the model ENSO-AO relationship is unrealistically strong in the NMME models.

Figure 4 shows the lead-0 and lead-7 forecasts of the 200 hPa geopotential height anomalies regressed onto
the predicted AO and Niño-3.4 indices over all months. Figure 4 (top row) shows the average of 100 regres-
sion maps based on the AO indices created for all 100 members. For both lead times, the height pattern
matches the conventional AO pattern featured in Thompson and Wallace (2000), among many others, with
out-of-phase height anomalies over the Arctic and the middle latitudes. The similarity between both leads
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suggests that an individual NMME member of the AO is an appropriate analog to the observational AO index,
containing both signal and noise. However, after averaging together the 100 AO indices to suppress the noise,
and then regressing the single ensemble mean AO index onto the height field, a different picture emerges
(Figure 4, middle row). In this case, the lead-7 AO index projects onto a height pattern more similar to the
anomalies associated with ENSO (Figure 4, bottom row). Supporting information Figure S5 shows the lead-7
AO and the inverted Niño-3.4 ensemble mean indices for February-April targets (selected because skill in the
AO and Niño-3.4 extends out to lead-7) and also reveals a very close correspondence between the temporally
evolving signals of Niño-3.4 and the AO. Yet this similarity is not as obvious for the lead-0 ensemble mean
indices, which have noticeably higher amplitudes, signifying that the drivers of the AO, in addition to ENSO,
are increasingly incorporated into the forecasted signal.

4. Discussion and Future Work

The results here are presented for the NMME, which encompasses a diverse range of models and a large set of
ensemble members. There are inherent advantages in using such a forecast system to study the skill of ENSO
and AO because the models are constructed at different institutions, so are at least somewhat structurally
independent (though there can be some shared components). Furthermore, a larger set of members enables
better estimates of predictability. Notwithstanding the advantages of the NMME, it is still subject to some of
the same limitations as other individual models and multimodel combinations. The limited hindcast record
length (36 years) means that the AO-ENSO behavior may be a function of the sample period. There may be
biases in the model, and so the AO-ENSO relation could be unrealistically strong, though the member spread
is inclusive of the observations. And finally, while NMME ensemble is—to our knowledge—the largest to date
used to examine AO skill, the signal and noise are still unlikely to be perfectly known. But because real-world
observations only contain one realization, we rely on the models to provide the best estimate of predictability
(Deser et al., 2012; Jha et al., 2016).

Despite these limitations, the strong relations between ENSO and the AO documented herein are provocative,
indicating that a part of the predictable signal associated with the AO depends on ENSO, especially at longer
lead times. Whether these relations are present in other models and multi-modeling systems remains to be
seen. The long-lead relation is also suggested by Dunstone et al. (2016) who show, using multivariate regres-
sion and correlation, that ENSO and the stratospheric polar vortex account for NAO skill out to ∼13 months.
Because our analysis is restricted to the 200 hPa level, other levels may provide additional insight. Previous
research indicates that current state-of-the-art modeling systems underestimate stratospheric-tropospheric
coupling (Riddle et al., 2013; Stockdale et al., 2015). Correctly capturing these linkages may be even more
important because the high-latitude response to ENSO is likely also modulated by the stratosphere (Butler
et al., 2014; Ineson & Scaife, 2009; Polvani et al., 2017). The high correlation between ENSO and the AO during
the winter and spring may suggest stratospheric-tropospheric coupling, so it would be useful to diagnose
whether AO-ENSO covariability arises from this mechanism or from tropospheric teleconnections alone.

Overall, understanding the skill and predictability of the AO is critical to improving middle- to high-latitude
climate outlooks. The AO predictability is likely overestimated with overconfident forecasts during most sea-
sons and lead times, and this reflects a model response that is too sensitive to ENSO. This sensitivity may arise
from the models underrepresenting or missing other sources of predictability. Alternatively, the strong AO skill
could be the consequence of observed sampling variability, in which skill fluctuates naturally and randomly
over time. Even if the physics of the AO-ENSO connection could be firmly established, the low correlations in
the observations relative to those in the models still prompts the question of whether the change in the fore-
casted ensemble means is large enough to be of consequence. This question, among many others that arise
in light of this ENSO-AO association in NMME, justifies further testing methods to constrain our estimates of
predictability and to better understand the sources of prediction skill in the middle to high latitudes.

References
Barnston, A. G., Chelliah, M., & Goldenberg, S. B. (1997). Documentation of a highly ENSO-related SST region in the equatorial Pacific:

Research Note. Atmosphere-Ocean, 35(3), 367–383. https://doi.org/10.1080/07055900.1997. 9649597
Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S., & DeWitt, D. G. (2012). Skill of real-time seasonal ENSO model predictions

during 2002–11: Is our capability increasing? Bulletin of the American Meteorological Society, 93, 631–651.
https://doi.org/10.1175/BAMS-D-11-00111.1

Barnston, A. G., Tippett, M. K., Ranganathan, M., & L’Heureux, M. L. (2017). Deterministic skill of ENSO predictions from the North American
Multimodel Ensemble. Climate Dynamics, 1–20. https://doi.org/10.1007/s00382-017-3603-3

Acknowledgments
We thank two anonymous reviewers,
Mingyue Chen and Emily Becker,
for reviewing the manuscript. M. L.,
K. H., Q. D., and N. J. acknowledge the
NOAA Climate Program Office (CPO),
Climate Variability and Predictability
Program (NA15OAR4310162), and
M. L., L. C., and K. H. acknowledge
NOAA CPO Modeling, Analysis,
Predictions, and Projections Program
(NA16OAR4310075). M. K. T. was par-
tially supported by the Office of Naval
Research awards N00014-12-1-0911
and N00014-16-1-2073. The NMME
project and data dissemination is sup-
ported by NOAA, NSF, NASA, and DOE.
We acknowledge the help of CPC,
IRI, and NCAR personnel in creating,
updating, and maintaining the NMME
archive NMME forecasts are available
for download from the IRI Data Library
at http://iridl.ldeo.columbia.edu/
SOURCES/.Models/.NMME/.

L’HEUREUX ET AL. RELATIONS BETWEEN ENSO AND THE AO 11,660

https://doi.org/10.1080/07055900.1997. 9649597
https://doi.org/10.1175/BAMS-D-11-00111.1
https://doi.org/10.1007/s00382-017-3603-3
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/


Geophysical Research Letters 10.1002/2017GL074854

Butler, A. H., Arribas, A., Athanassiadou, M., Baehr, J., Calvo, N., Charlton-Perez, A.,… Yasuda, T. (2016). The Climate-system Historical

Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quarterly Journal of the

Royal Meteorological Society, 142(696), 1413–1427. https://doi.org/10.1002/qj.2743

Butler, A. H., Polvani, L. M., & Deser, C. (2014). Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation

teleconnections. Environmental Research Letters, 9(2), 024014.

Cohen, J., Foster, J., Barlow, M., Saito, K., & Jones, J. (2010). Winter 2009–2010: A case study of an extreme Arctic Oscillation event.

Geophysical Research Letters, 17, L17707. https://doi.org/10.1029/2010GL044256

Dai, P., & Tan, B. (2017). The nature of the Arctic Oscillation and diversity of the extreme surface weather anomalies it generates. Journal of

Climate, 30, 5563–5584. https://doi.org/10.1175/JCLI-D-16-0467.1

DelSole, T., & Tippett, M. K. (2015). Laplacian eigenfunctions for climate analysis. Journal of Climate, 28(18), 7420–7436.

https://doi.org/10.1175/JCLI-D-15-0049.1

Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate

Dynamics, 38, 527–546. https://doi.org/10.1007/s00382-010-0977-x

Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N.,… Knight, J. (2016). Skilful predictions of the winter North Atlantic

Oscillation one year ahead. Nature Geoscience, 9(11), 809–814.

Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., & Robinson, N. (2014). Do seasonal-to-decadal climate predictions

underestimate the predictability of the real world? Geophysical Research Letters, 41, 5620–5628. https://doi.org/10.1002/2014GL061146

Feldstein, S. B. (2000). The timescale, power spectra, and climate noise properties of teleconnection patterns. Journal of Climate, 13(24),

4430–4440. https://doi.org/10.1175/1520-0442(2000)013<4430:TTPSAC>2.0.CO;2

Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2013). An overview of the North Atlantic oscillation. In J. W. Hurrell et al. (Eds.),

The North Atlantic Oscillation: Climatic significance and environmental impact (pp. 1–35). Washington, DC: American Geophysical Union.

https://doi.org/10.1029/134GM01

Ineson, S., & Scaife, A. A. (2009). The role of the stratosphere in the European climate response to El Niño. Nature Geoscience, 2, 32–36.

Jha, B., Kumar, A., & Hu, Z.-Z. (2016). An update on the estimate of predictability of seasonal mean atmospheric variability using North

American Multi-Model Ensemble. Climate Dynamics, 1–13. https://doi.org/10.1007/s00382-016-3217-1

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,… Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project.

Bulletin of the American Meteorological Society, 77(3), 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kang, D., Lee, M.-I., Im, J., Kim, D., Kim, H.-M., Kang, H.-S.,…MacLachlan, C. (2014). Prediction of the Arctic Oscillation in boreal winter by

dynamical seasonal forecasting systems. Geophysical Research Letters, 41, 3577–3585. https://doi.org/10.1002/2014GL060011

Kirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A., Zhang, Q.,…Wood, E. F. (2014). The North American Multimodel Ensemble:

Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bulletin of the American Meteorological

Society, 95(4), 585–601. https://doi.org/10.1175/BAMS-D-12-00050.1

Kumar, A. (2009). Finite samples and uncertainty estimates for skill measures for seasonal prediction. Monthly Weather Review, 137,

2622–2631. https://doi.org/10.1175/2009MWR2814.1

Lorenz, D. J., & Hartmann, D. L. (2003). Eddy zonal flow feedback in the Northern Hemisphere winter. Journal of Climate, 16(8), 1212–1227.

https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2

O’Reilly, C. H., Heatley, J., MacLeod, D., Weisheimer, A., Palmer, T. N., Schaller, N., & Woollings, T. (2017). Variability in seasonal

forecast skill of Northern Hemisphere winters over the twentieth century. Geophysical Research Letters, 44, 5729–5738.

https://doi.org/10.1002/2017GL073736

Polvani, L. M., Sun, L., Butler, A. H., Richter, J. H., & Deser, C. (2017). Distinguishing stratospheric sudden warmings from ENSO

as key drivers of wintertime climate variability over the North Atlantic and Eurasia. Journal of Climate, 30(6), 1959–1969.

https://doi.org/10.1175/JCLI-D-16-0277.1

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high-resolution-blended analyses for sea surface

temperature. Journal of Climate, 20(22), 5473–5496. https://doi.org/10.1175/2007JCLI1824.1

Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L., & Kumar, A. (2013). CFSv2 ensemble prediction of the wintertime Arctic oscillation.

Climate Dynamics, 41(3), 1099–1116. https://doi.org/10.1007/s00382-013-1850-5

Saito, N. (2008). Data analysis and representation on a general domain using eigenfunctions of Laplacian. Applied and Computational

Harmonic Analysis, 25(1), 68–97. https://doi.org/10.1016/j.acha.2007.09.005

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N.,…Williams, A. (2014). Skillful long-range prediction of

European and North American winters. Geophysical Research Letters, 41, 2514–2519. https://doi.org/10.1002/2014GL059637

Shi, W., Schaller, N., MacLeod, D., Palmer, T. N., & Weisheimer, A. (2015). Impact of hindcast length on estimates of seasonal climate

predictability. Geophysical Research Letters, 42, 1554–1559. https://doi.org/10.1002/2014GL062829

Sigmond, M., Scinocca, J. F., Kharin, V. V., & Shepherd, T. G. (2013). Enhanced seasonal forecast skill following stratospheric sudden warmings.

Nature Geoscience, 6(2), 98–102.

Smith, D. M., Scaife, A. A., Eade, R., & Knight, J. R. (2016). Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging

capability and future prospects. Quarterly Journal of the Royal Meteorological Society, 142(695), 611–617. https://doi.org/10.1002/qj.2479

Stockdale, T. N., Molteni, F., & Ferranti, L. (2015). Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophysical

Research Letters, 42, 1173–1179. https://doi.org/10.1002/2014GL062681

Tang, Y., Lin, H., Derome, J., & Tippett, M. K. (2007). A predictability measure applied to seasonal predictions of the Arctic Oscillation. Journal

of Climate, 20(18), 4733–4750. https://doi.org/10.1175/JCLI4276.1

Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields.

Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950

Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of

Climate, 13(5), 1000–1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

Thompson, D. W. J., & Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere annular mode. Science, 293(5527), 85–89.

https://doi.org/10.1126/science.1058958

L’HEUREUX ET AL. RELATIONS BETWEEN ENSO AND THE AO 11,661

https://doi.org/10.1002/qj.2743
https://doi.org/10.1029/2010GL044256
https://doi.org/10.1175/JCLI-D-16-0467.1
https://doi.org/10.1175/JCLI-D-15-0049.1
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1002/2014GL061146
https://doi.org/10.1175/1520-0442(2000)013%3C4430:TTPSAC%3E2.0.CO;2
https://doi.org/10.1029/134GM01
https://doi.org/10.1007/s00382-016-3217-1
https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
https://doi.org/10.1002/2014GL060011
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1175/2009MWR2814.1
https://doi.org/10.1175/1520-0442(2003)16%3C1212:EFFITN%3E2.0.CO;2
https://doi.org/10.1002/2017GL073736
https://doi.org/10.1175/JCLI-D-16-0277.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1007/s00382-013-1850-5
https://doi.org/10.1016/j.acha.2007.09.005
https://doi.org/10.1002/2014GL059637
https://doi.org/10.1002/2014GL062829
https://doi.org/10.1002/qj.2479
https://doi.org/10.1002/2014GL062681
https://doi.org/10.1175/JCLI4276.1
https://doi.org/10.1029/98GL00950
https://doi.org/10.1175/1520-0442(2000)013%3C1000:AMITEC%3E2.0.CO;2
https://doi.org/10.1126/science.1058958


Geophysical Research Letters 10.1002/2017GL074854

Tippett, M. K., Barnston, A. G., & DelSole, T. (2010). Comments on finite samples and uncertainty estimates for skill measures for seasonal
prediction. Monthly Weather Review, 138(4), 1487–1493. https://doi.org/10.1175/2009MWR3214.1

Tippett, M. K., Ranganathan, M., L’Heureux, M., Barnston, A. G., & DelSole, T. (2017). Assessing probabilistic predictions of ENSO phase and
intensity from the North American Multimodel Ensemble. Climate Dynamics, 1–22. https://doi.org/10.1007/s00382-017-3721-y

Wang, L., Ting, M., & Kushner, P. J. (2017). A robust empirical seasonal prediction of winter NAO and surface climate. Scientific Reports, 7(1),
279. https://doi.org/10.1038/s41598-017-00353-y

Yu, B., & Lin, H. (2016). Tropical atmospheric forcing of the wintertime North Atlantic oscillation. Journal of Climate, 29(5), 1755–1772.
https://doi.org/10.1175/JCLI-D-15-0583.1

L’HEUREUX ET AL. RELATIONS BETWEEN ENSO AND THE AO 11,662

https://doi.org/10.1175/2009MWR3214.1
https://doi.org/10.1007/s00382-017-3721-y
https://doi.org/10.1038/s41598-017-00353-y
https://doi.org/10.1175/JCLI-D-15-0583.1

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


